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The Gravitational Wave Landscape for Binaries
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Supermassive Black Hole Binaries Emit nHz Gravitational Waves

• Basic physics:  GR (Einstein, 1918)                                                               

+ Mechanics (𝑄 ∝ 𝑟2) + Kepler’s Laws (𝑟3 =
𝐺𝑀

(2𝜋𝑓)2
) lead to a simple relation:

A circular binary with frequency 
𝒇

𝟐
emits GW with frequency 𝒇 and amplitude 𝒉 ∝ 𝒇

𝟐

𝟑.

• For typical SMBH masses, GW emission dominates at binary separations of <0.01—0.1pc, i.e. 

orbital periods ≫ 10 years.

• Binaries spend more time at wide separations.  Adding them up over the cosmological 

population and adding in the 
1

𝑑
amplitude scaling (Phinney (2003), Sesana et al. (2004)) leads to 

the prediction of a “stochastic”, nHz gravitational wave background (GWB) with a power-law 

spectrum (𝛼 = −
2

3
):
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Probing the SMBHBs Population with the GWB
(see Burke-Spolaor et al. 2019 for a review)

• GW amplitude 𝑨𝐠𝐰𝐛 scales with masses of merging black holes and the efficiency of BH mergers.

• BHs must reach center of merged galaxy and must shed angular momentum to close from 1pc to 

<0.1pc, the “Final Parsec Problem”.  Stalled mergers will produce different spectral shapes and 

amplitudes, as does eccentricity.

• The background is not necessarily a power law!  Brightest (mass/distance) mergers can dominate.

• Detecting the amplitude 𝑨𝐠𝐰𝐛 and ultimately, the shape of the GWB spectrum provides a 

direct constraint on a process whose large dynamic range makes it difficult to 

observe/simulate, and complements other probes of BH masses.
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Sesana et al., 2009



How to detect nHz GWs?

• Lightyear-wavelengths too long for LISA.

• Pulsars can be celestial clocks (next slide).

– At ~kpc distances, many wavelengths of nHz GWs fit along one 

“detector arm”.  But NOT an interferometer.

– The longer one monitors a pulsar, the lower GW frequencies one 

can access.  1yr = 32 nHz.

• How do GWs affect pulsar timing signals?

– Intuitively, the bulk effect washes out, so the result depends only on 

the GW strain at the “detector endpoints”.
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Wave polarization averages out 

for stochastic background.

Angle between line-of-sight and GW 

propagation vector also averages, but 

leaves hallmark correlations (next slide).

The “earth” term: The GW 

amplitude at Earth.
The “pulsar” term: The GW amplitude at the 

pulsar with distance l.  Unknown.  (But could, 

with great luck, be measured if the pulsar 

distance is known to <1ly precision.)



Pulsar Timing with Radio Telescopes

• Point a big dish at a pulsar and “fold” the signal to stack pulses.

• Cross-correlate pulse profile with “standard template” to estimate offset relative 

to observatory clock (typically referenced to GPS).

• This is a “pulse time of arrival” or TOA.

• Pulsar timing is the science and art of comparing the observed TOAs

with a prediction for when they should have arrived (next slide).
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Pulsar Timing: Basic Models

Every pulsar will need a model for position, proper motion, spindown-rate, parallax.  Some need binary properties, including 

post-Newtonian effects.  And eventually, we need to model GWs!
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Positions measured using a 1AU baseline!  Pulse 

times shifted by up to 480s.  Parallax measured 

through relative delay between plane wavefronts.



Pulsar Timing Arrays
(PTAs are arrays of *pulsars* not of telescopes!)

• PTAs are monitored collections of high-precision millisecond pulsars (MSPs).

• The GWB induces time-dependent residuals in pulse arrival times with a power 

spectral density (with Γ = Τ13
3) which is common to every pulsar:

• Because pulsars share the “earth” term, the noise is correlated between pulsars 

depending on their angular separation.  This is the famous “Hellings-Downs” 

curve.

• So searching for the GWB has two prongs:

1. Identification of noise processes with the right spectral shape, present at the 

same amplitude in *every* pulsar..

2. Detection of the HD curve.  However, because the typical correlation 

coefficient is small (absolute value < 0.2), it is likely that the first method will 

yield the first detection.

• Ancillary: the expected power spectrum is very steep (-13/3), so the first 

detection will also come from the lowest frequencies.  Long data sets are good!
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𝐴gwb = 1 × 10−15
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Radio PTA Results

• Recently, PTAs published “evidence 

for” Hellings-Downs spatial 

correlations.

– See papers from NANOGrav, 

EPTA/InPTA, PPTA, CPTA

• This follows detections in 2021 of 

“common noise processes”.

• Thus, potential evidence (both 

prongs) for a GWB!

• Spectrum largely agrees with 

expectations from SMBH binary 

mergers.

– (Or your favorite new physics 

source…)
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Agazie et al., 2023 (NANOGrav 15 year results)



Confounding Effects from the ISM
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The (ionized) interstellar medium (IISM) disperses, diffracts, and refracts radio waves.  Main 

effect is dispersion, which introduces a frequency-dependent delay (relative, and absolute.)

DM varies with time because of relative motion.  

Here, note parallactic terms and a gradient 

from proper motion.

D(isperion)M(easure) is usually 

estimated by fitting for the ∝ 𝜈−2

delay…

Jones et al. (2016)

Hassall et al. (2012)

…but the pulse profile itself varies as a 

function of frequency!



Confounding Effects from the IISM

11Cordes, Shannon, & Stinebring (2016) Graham-Smith, Lyne, & Jordan (2011)

Hill et al. (2005)

• Because low-frequency light is bent more, DM can be measured very precisely at 

low frequencies.

• But, the electron column isn’t the same!  So you can’t correct high-frequency 

dispersion with low-frequency data.

• Refraction and diffraction complicate observability and couple in higher-order time-

delays that can neither be modeled nor measured.

Further effects:

• Radio frequency interference 

(RFI)

• Instrumental “jumps”

• Jitter and other “white noise”

• Pulsar red/timing/spin noise



Fermi-LAT is a widefield pair-conversion telescope operating 

between ~50 MeV and ~1 TeV, most sensitive at ~1 GeV.

Major sub-subsystems: anticoincidence detector, silicon strip 

tracker, and CsI hodoscopic calorimeter.

Good energy resolution, good (for gamma rays) PSF that varies 

strongly with energy.  Source confusion is a way of life. 12

• Operating since 2008: long uninterrupted dataset.

• Timestamping accurate to <300 ns and onboard 

GPS provides accurate absolute time reference.
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Pulsars with the LAT

Fermi has detected nearly 300 GeV pulsars!

• Three main groups: (1) young radio pulsars, (2) “unguided search” pulsars 

(mostly young, radio quiet), and (3) millisecond pulsars (MSPs)

• We now know pulsars are VERY efficient gamma-ray emitters; MSPs 

reach 10s of percent!
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The Fermi Treasure Map
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Pulsar Search Consortium 

(Ray et al., 2012)
Of the nearly 300 detected gamma-ray pulsars, about 130 are MSPs.

Many were detected by the PSC and related efforts.



LAT Data vs. Radio Data

• In some cases pulsar timing is 

similar to radio:

– Observe a pulsar “long enough”

to detect its pulse profile and 

reference it to the GPS clock.

– Use Poisson likelihood instead of gaussian for LAT.

• Integration times vary wildly: ~10 minutes for Vela, 

up to 1 year for faintest pulsars.

– Averaging so much data together smears out 

signals, e.g. from the 1-year annual sinusoid from 

position fitting.

• Best to use an “unbinned” approach – compute the 

spin phase of each photon and maximize the 

likelihood.

• We have developed pipelines for both TOA-based 

and unbinned gamma-ray pulsar timing.
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Increase integration window until it 

encircles enough photons to significantly 

see the pulse profile.

For brighter pulsars, the window is narrower.

Thus, for some applications, e.g. determining 

a position, only bright pulsars (many windows 

per year) are suitable.

J0610-2100 J1231-1411



Gamma Pulsar Timing Array (DR1)

• Fermi-LAT team developed 

high-precision pulsar timing tools to

analyze 35 gamma-bright MSPs

• With 12.5 years of data (now called 

DR1), set an upper limit on the 

canonical GWB:

𝐴gwb < 10 × 10−15.

• Time scaling (“weak signal regime”) 

shown in red:

– With continued data collection, the

gamma-ray PTA will detect and

characterize the GWB!

•

VERY MINIMAL SYSTEMATIC UNCERTAINTY.
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Adapted and updated from Ajello et al., 2022 

(Fermi-LAT Collaboration)



Upgrades: More Data, More Pulsars

• We are expanding the data set to 15 years 

(~14.5 reported here).

• In the weak signal regime, more data wins: 

S/N ~ 𝑁𝑝
0.5𝑇2.17.

• In the strong signal regime, S/N ~ 𝑁𝑝
0.5𝑇0.25.

• DR1 used the best pulsars, in terms of both 

sheer number of photons received and 

good “clock” properties (high spin rate, 

sharp pulse).

• But as we near detection, more pulsars 

might be helpful.
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PRELIMINARY



Upgrades: Better Pulse Models

• We have also upgraded the software to 

more accurately model the change in pulse 

profile shape over the LAT energy range.

– Previous, energy-averaged model loses 

information, e.g. by blurring a feature as it 

evolves with energy, so new models offer 

more sensitivity.

– Energy-resolved models also guard 

against possible systematic errors from 

changes in exposure.

• (The LAT exposure is generally stable 

but has some episodic changes, e.g. in 

rocking profile, Galactic center stare, 

modified survey.)
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PRELIMINARY

The pulse profile of J0614-3329 (red histogram), one of the best-timed gamma-ray 

pulsars, evolves strongly with energy.  The new model (solid) captures this evolution 

effectively, unlike the previous model (dashed).



Preliminary Results and Conclusions

• With the additional pulsars and 

energy-dependent profiles, we 

performed a new search for the 

GWB, obtaining 𝐴𝑔𝑤𝑏 < 6.7 × 10−15.

– This is about 10% better than the 

time scaling alone, indicating 

upgrades are effective.

• With continued time scaling and 

improvements, on target to detect 

GWB within 5 years.

• Other applications: check radio PTA 

results with many fewer systematic 

uncertainties.
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PRELIMINARY



Assessing Current and Future Capabilities

Developing a metric of timing quality for each pulsar which allows the construction of an 

equivalent set of “TOAs”, thus use of existing PTA software like hasasia. 
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The differential sensitivity curve for 15 years of 

“DR1” equivalent data, for a S/N of 2, along with 

limits for various power-law GW spectra.

Agrees with the upper limits obtained 

reasonably well.

Allows rapid exploration of changing 

parameters: which pulsars contribute, sky maps 

for continuous wave searches, longer/shorter 

data sets, more sensitive instruments…



Assessing Current and Future Capabilities

Suppose Fermi had 30x the sensitivity: easily detect GWB via spatial correlations!

GWB sensitivity improves by 30.  Less favorable scaling than radio dishes…
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The differential sensitivity curve for 15 years of 

“DR1” equivalent data, for a S/N of 2, along with 

limits for various power-law GW spectra.

Agrees with the upper limits obtained 

reasonably well.

Allows rapid exploration of changing 

parameters: which pulsars contribute, sky maps 

for continuous wave searches, longer/shorter 

data sets, more sensitive instruments…



Assessing Current and Future Capabilities

Within a prime mission?
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The differential sensitivity curve for 15 years of 

“DR1” equivalent data, for a S/N of 2, along with 

limits for various power-law GW spectra.

Agrees with the upper limits obtained 

reasonably well.

Allows rapid exploration of changing 

parameters: which pulsars contribute, sky maps 

for continuous wave searches, longer/shorter 

data sets, more sensitive instruments…

Fifteen YearsFive Years



Key Takeaways

• The length and stability of the Fermi-LAT data set are the main drivers of its sensitivity to low-

frequency gravitational waves.

– Goal: achieve independent measurement of GWB within 5 years.

• Many new personnel and capabilities beginning to work on full utilization of data set and 

incorporation with IPTA data and tools.

• The Gamma-ray Pulsar Timing Array (𝜸PTA) DR2 will be available soon with 15 years of data.

• A substantially more sensitive GeV (MeV) capability could much more accurately measure 

GWB, but (probably) only with >10 years of integration.

– However, shorter data spans could enable much more effective studies of radio/gamma timing 

consistency.
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What Happens to the Supermassive Black Holes?
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(Kahn+11, Preto+11,

Sesana&Khan15,

Vasiliev+15)

(Hayasaki+07, Cuadra+09, Roedig+11, Sesana+12...)

Gas

Stars

(Bonetti+18

Ryu+18)

Triplets

. .

Begelman, Blandford, & Rees (1980)

10 kpc: double quasars
(Komossa 2003)

0.0pc:-X-shaped sources (Capetti 2001)

-displaced AGNs (Civano 2009)

0.01 pc: periodicity (Graham 2015)

10 pc: double radio cores (Rodriguez 2006)

1 kpc: double peaked NL (Comerford 2013)

1 pc:  -shifted BL (Tsalmatzsa 2011))

-accelerating BL (Eracleous 2012)

..

Thanks to Alberto Sesana, from whom I shamelessly stole this slide material!


